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ABSTRACT
National statistical agencies around the world publish tabular sum-
maries based on combined employer-employee (ER-EE) data. The
privacy of both individuals and business establishments that feature
in these data are protected by law in most countries. These data are
currently released using a variety of statistical disclosure limita-
tion (SDL) techniques that do not reveal the exact characteristics
of particular employers and employees, but lack provable privacy
guarantees limiting inferential disclosures.

In this work, we present novel algorithms for releasing tabular
summaries of linked ER-EE data with formal, provable guarantees
of privacy. We show that state-of-the-art differentially private al-
gorithms add too much noise for the output to be useful. Instead,
we identify the privacy requirements mandated by current interpre-
tations of the relevant laws, and formalize them using the Puffer-
fish framework. We then develop new privacy definitions that are
customized to ER-EE data and satisfy the statutory privacy require-
ments. We implement the experiments in this paper on production
data gathered by the U.S. Census Bureau. An empirical evalua-
tion of utility for these data shows that for reasonable values of the
privacy-loss parameter ε ≥ 1, the additive error introduced by our
provably private algorithms is comparable, and in some cases bet-
ter, than the error introduced by existing SDL techniques that have
no provable privacy guarantees. For some complex queries cur-
rently published, however, our algorithms do not have utility com-
parable to the existing traditional SDL algorithms. Those queries
are fodder for future research.

Keywords
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1. INTRODUCTION
In this paper we present a case study in applying provably pri-

vate algorithms for publishing tabular summaries of linked ER-EE
data; i.e., data about business establishments and characteristics of
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their workforces. Such publications are used to compute national
and local economic indicators, including job creation and destruc-
tion statistics. Canada, the United Kingdom, and most Eurostat
countries have regularly published data from establishment-based
surveys that directly measure employee characteristics. Statistics
Sweden explicitly publishes such tabulations based on its Business
Database (a frame containing lists of workplaces) combined with
establishment-based surveys that measure employee characteris-
tics. In the U.S., the Census Bureau publishes County Business
Patterns (CBP) and Quarterly Workforce Indicators (QWI) using
establishment frames that include characteristics of employees.

We focus on one establishment-based data product published by
the U.S. Census Bureau’s Longitudinal Employer-Household Dy-
namics Program (LEHD) [6]. The LEHD infrastructure files com-
bine confidential census, survey and administrative records to tabu-
late and release public-use data called the LEHD Origin-Destination
Employment Statistics (LODES) [13]. A LODES tabulation in
2011, for example, provides a snapshot of approximately 130 mil-
lion jobs by workplace and residence location, as well as by a set
of employer (industry sector and ownership type), employee (age,
gender, race, ethnicity and education) and job characteristics [2].

These linked ER-EE data cannot be released as unaltered
establishment-level microdata. They are subject to long-standing
legal confidentiality protections that apply to both establishments
and employees. Census Bureau publications must protect whether
or not a specific individual is employed at a workplace and the re-
ported count of employees at a workplace; however, the existence
of one or more employers in a location, industrial sector, or owner-
ship type does not require privacy protection.

The combination of detailed geography (at the level of a census
block) with characteristics of establishments and employees results
in sparse tabulations for which many cells have only a few con-
tributing establishments and/or individuals. In addition, the out-
come being tabulated, employment, is highly right skewed (i.e.,
has many large outlying values) at the establishment level. The
combined effect of sparsity and skewness is the potential for re-
identification attacks. Violating the statutory confidentiality pledge,
for example by publishing data that permit re-identifying employ-
ees or inferring exact employer characteristics, can result in fines
of up to $250,000 and potential imprisonment for up to five years
for those Census Bureau employees who authorize these publica-
tions.1 Thus, privacy must be ensured as a matter of criminal law

1These fines and prison terms change often, but since each data
item is a separate violation, the ones cited in the text are really
lower bounds. All authors on this paper take security training each
year that includes the current values of these fines and prison terms.
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with each employee and contractor of the Census Bureau bound by
the law. With the stakes so high, we ask:
• “Can we develop algorithms for releasing such data that prov-

ably uphold the privacy requirements mandated by law?”, and
• “What is the loss of data usefulness (utility cost) when releasing

summaries that provably ensure privacy?”
Statutory requirements obligate the statistical agency not to pub-

lish the raw microdata; however, they do not prescribe exactly how
to publish the data [22]. Current publications of employment counts
for detailed industries and geographies released by the Census Bu-
reau and other agencies (including LODES) use a variety of confi-
dentiality protection methods known collectively as statistical dis-
closure limitation (SDL) to limit potential re-identification attacks.
These SDL methods are the de facto interpretations of the legally
required confidentiality protections [21, 8]. For instance, in cur-
rent LODES publications, workplace counts are protected by an in-
put noise infusion system2 that provably avoids exact disclosures
of establishment level employment counts but has no guarantee
that users are prevented from inferring actual establishment job
counts to within some stated level of accuracy [10, 11, 27](we pro-
vide examples of vulnerabilities in Sec. 5.2). Moreover, due to the
establishment-level skewness and the sparsity of some cells in the
tables, these SDL techniques also limit the suitability of the pub-
lished data for analyzing geographical and industrial characteristics
of employers and employees in some cases. These limitations are
the explicit utility loss from the input noise infusion SDL.

To overcome the aforementioned limitations of the current state
of the art, we develop novel algorithms with provable privacy guar-
antees and measure the utility cost of such methods on the LODES
dataset. Differential privacy [24] is the gold standard for provably
private algorithms. It requires that the output of a private algo-
rithm be insensitive to the presence of any single entity. A direct
application of differentially private [25, 23] techniques to our data
results in either insufficient privacy or poor utility when the entity
is an establishment. Recent privacy frameworks generalizing dif-
ferential privacy provide another avenue to address our problem.
The Pufferfish framework [35] is a formal privacy framework that
defines the privacy of an algorithm as the change in an adversary’s
belief about a given set of secrets after seeing the output to the algo-
rithm. The framework is provided with both the set of secrets (e.g.
whether or not any individual is in the dataset in the case of differ-
ential privacy), and the assumptions about the adversary. Though
we would ideally like a privacy guarantee that is assumption-free,
seminal work of Kifer and Machanavajjhala [33] shows that such
assumptions are required: one can not ensure privacy and utility
simultaneously without making assumptions about an adversary’s
beliefs about the data generation mechanism. For instance, it is
known [33, 40, 41] that attacker-independent privacy notions like
ε-differential privacy limit the ability of an attacker to learn proper-
ties of individual records in the input dataset if and only if the ad-
versary believes records in the data are independent of one another.
We use the Pufferfish framework to mathematically formulate pri-
vacy requirements based on current interpretations of relevant laws
governing the release of LODES data, and develop novel privacy
definitions and algorithms that meet these requirements. Our main
deviation from differential privacy is a change to the information
we want to keep private, not a change to the assumptions about

2In prior work [37], we developed an algorithm to protect employee
residence locations that provably ensures probabilistic differential
privacy. Residence locations are not a focus of this paper. In addi-
tion, other ER-EE products mentioned above do not contain infor-
mation on employee residence locations.

the adversary under which disclosure is bounded. Our algorithms
provably ensure that a privacy-loss limit is respected while achiev-
ing utility comparable to the current publication methodology.

Our contributions are as follows:
(i) We formalize the privacy requirements for releasing ER-EE data
using the Pufferfish framework [34, 35] (Sec. 4) to ensure that a
strongly informed attacker cannot (a) infer whether an employee
held a job, and (b) learn establishment sizes to within a pre-spec-
ified multiplicative factor from the output of a data release. The
requirements are developed by reviewing the current interpreta-
tions of the legal regulations that the national statistical agencies
are mandated to follow when releasing such data. For answering
queries on employer attributes, we make exactly the same assump-
tions about the adversary that must be made under differential pri-
vacy to ensure that inferential disclosure is bounded. To answer
queries over both employer and employee attributes, we must make
additional assumptions about the adversary.
(ii) Our data can be represented as a bipartite graph between em-
ployers and employees, each edge representing a job. Thus, edge-
[31] and node-differentially private techniques [18, 20, 32] can be
applied to protect the data (Sec. 6). We show that edge-differential
privacy, which “hides” the presence of a single job, does not satisfy
our privacy requirements for establishments. Node-differential pri-
vacy satisfies the privacy requirements but results in poor utility.
(iii) We formulate novel attacker-independent privacy definitions
that satisfy both the Pufferfish framework and the legal framework.
These provably limit an informed attacker’s ability to make infer-
ences about employees and employers (Sec. 7). Thus, our algo-
rithms conform to current interpretations of the confidentiality laws
governing these data.
(iv) We develop algorithms for releasing counts that satisfy our new
privacy definitions. We prove analytical bounds on the errors for
each algorithm (Sec. 8 and 9). Our algorithms use an extension of
the smooth sensitivity framework [38].
(v) We empirically evaluate the utility cost of provable privacy us-
ing the production data from an ER-EE dataset maintained by the
U.S. Census Bureau (Sec. 10). For releasing tabular summaries and
rankings, we compare the error introduced by our algorithms to the
error produced by the existing protection scheme. We show that we
can release tabular summaries of establishment characteristics with
additive error that is comparable (within a factor of 3) and in some
cases smaller than the error introduced by the current SDL tech-
niques for reasonable values of the privacy-loss parameters. On the
other hand, node-differentially private techniques incur an additive
error that is at least 10 times larger than that of SDL techniques
(at ε = 4), and the error does not decrease significantly when ε is
increased. For counts and rankings, the relative error of our new al-
gorithms is comparable to that of the existing SDL methods. Since
tabular summaries of employment by establishment characteristics
alone, such as in the Business Database statistics (Sweden) or the
CBP (U.S.A.), are important publications, it is significant that we
are able to achieve provable privacy protection with relatively little
sacrifice in data utility as compared to existing methods.
(vi) For tabulations involving both establishment and employee char-
acteristics, under a weaker adversary model, we are able to show
competitive error for releasing single queries and rankings. Our
algorithms experience larger errors (within a factor of 100 com-
pared to existing methods) for releasing tabular summaries involv-
ing multiple employee characteristics. Understanding whether the
magnitude of this error is fundamental to provably private algo-
rithms or whether better algorithm design could lower such errors
is an avenue for future work.
(vii) Our techniques are applicable to virtually all establishment-
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based products released by statistical agencies for national produc-
tion and employment statistics, including those produced by the
Census Bureau, Bureau of Labor Statistics and Bureau of Eco-
nomic Analysis in the U.S.A. as well as the inputs to the national
income and product accounts, which are published for more than
200 countries. More broadly, our techniques are applicable to data
derived from multiple entities connected by a bipartite graph such
as user-purchases, reviewers-ratings, etc.

2. PRELIMINARIES
Database and Queries Let D be a table of records with schema
(A1, . . . , Ak). The domain of each attributeAi is denoted dom(Ai).
For a set of attributes V = {Ai1 , . . . , Aim}, let dom(V ) represent
the multidimensional domain ×A∈V dom(A). For each record t in
the table, we let t[Ai] ∈ dom(Ai) be the value of attribute Ai.
Let n = |D| denote the size of the table; i.e., D has n records.
A database with schema (S1, . . . , Sm) is a collection of tables
(D1, . . . , Dm), where Di has schema Si.

We will consider marginal queries over tables in this paper.

DEFINITION 2.1 (MARGINAL QUERY). The marginal query
qV (D) is defined as a vector of |dom(V )| counts, one for each cell
v = (v1, . . . , vm) ∈ dom(V ). The count corresponding to cell v,
denoted by qV (D,v) is

|{t ∈ D | t[Ai1 ] = v1 ∧ . . . ∧ t[Aim ] = vm}| (1)

q∅(D) returns a single cell whose count is the size of the table.

The marginal query can be succinctly expressed in SQL as:

Select Count(*) From D Group By Ai1 , . . . , Aim

Differential Privacy A mechanism or algorithm is differentially
private if its output is not significantly affected by the presence or
absence of a single record from the input table. Let D and D′ be
tables that differ in the presence of a single record; i.e., |(D\D′)∪
(D′ \D)| = 1. We call such tables neighbors.

DEFINITION 2.2 ((ε, δ)-DIFFERENTIAL PRIVACY [26]). Let
M be a randomized algorithm. Let the tables D and D′ be neigh-
bors with the same schema. Then M satisfies (ε, δ)-differential
privacy if for all D and D′ and for all S ⊆ range(M),

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ,

where δ allows for the ratio of probabilities to be unbounded with
a small failure rate. Values of δ that are Ω(1/n) should be avoided,
since algorithms that release more than a constant number of un-
perturbed records from the database satisfy such a definition. When
δ = 0, we refer to the condition as ε-differential privacy.

Queries over tables can be answered while satisfying differential
privacy by adding noise that is related to the sensitivity of the query.

DEFINITION 2.3 (SENSITIVITY). Let I denote the set of all
tables with a given schema. Let q : I → Rd be a query function
on tables from that set that outputs a vector of d real numbers. The
sensitivity of q, denoted ∆q , is

∆q = max
D,D′ neighbors∈I

||q(D)− q(D′)||1.

The Laplace mechanism is a commonly used ε-differentially pri-
vate technique.

DEFINITION 2.4 (LAPLACE MECHANISM [26]). Let q : I →
Rd be a query on a table. Let η ∼ Lap(λ) denote a random vari-
able drawn from the Laplace distribution with pdf Pr[η = x] ∝

e−|x|/λ. The algorithm which returns q̃(D) = q(D) + ηd satis-
fies ε-differential privacy, where ηd is a vector of d independently
drawn Laplace random variables.

DEFINITION 2.5 (EXPECTED Lp ERROR). Let q : I → Rd
be a query on a table, and q̃(D) be the noisy answer returned by
an algorithm. The expected Lp error of the algorithm is:

E (||q(D)− q̃(D)||p) (2)

where ||x||p is the Lp norm, and expectation is over the random-
ness of the algorithm.
We use expected L1 error to quantify the utility of algorithms.

The privacy loss increases when multiple queries are answered
on the database, and we reason about this loss for differential pri-
vacy using the following composition rule:

THEOREM 2.1 (SEQUENTIAL COMPOSITION). LetM1 and
M2 be ε1- and ε2-differentially private algorithms. Releasing the
outputs of M1(D) and M2(D) on the same input D results in
(ε1 + ε2)-differential privacy.

Thus, the privacy-loss parameter is often called the privacy budget
– the analyst is allowed to pose multiple queries as long as the total
privacy loss from answering all queries is no greater than ε. In other
words, a privacy-loss equal to ε exhausts the privacy budget.

3. THE DATASET
The LODES data are produced from the LEHD infrastructure

files, which are composed of administrative records, census and
survey data focused on the labor market, worker, and firm statis-
tics. Confidential Census Bureau data, state Unemployment In-
surance sources, Internal Revenue Service records, Social Security
Administration records, and federal Office of Personnel Manage-
ment records provide information on employment location and in-
dustry for jobs and residential location and demographic character-
istics for workers. These data form the basis of the LODES tabula-
tions. LODES are published as an annual cross-section of jobs held
on April 1 of each year from 2002 onwards.

3.1 Table and Database Structure
The LODES data are organized as a relation with three database

tables – Job, Worker and Workplace (see [2] for a complete de-
scription). The Workplace table contains one record per establish-
ment and describes the following attributes – NAICS code (denot-
ing industrial sector in which the establishment operates), owner-
ship (public/private), geography (the Census block where the esta-
blishment is located). The Worker table contains one record for
each individual working in any establishment at that point of time.
Worker attributes include age, sex, race, ethnicity, and education.
Finally, the Job table contains pairs (w, i) of worker and work-
place IDs denoting that worker i works at establishment w. We
assume each worker has exactly one job (although LODES allows
for queries that include secondary jobs). We have not documented
some of the attributes that do not feature in our queries.

We support marginal queries that output counts of employment
of the current year’s cross section of jobs over workplaces where
those establishments have been stratified by subsets of the avail-
able characteristics of employers and workers. Let VI denote a
subset of the worker attributes, and VW denote a subset of work-
place attributes. Let D denote the universal relation constructed by
joining the Job table with the Worker and Workplace tables using
the worker and workplace IDs, respectively. We call this the Work-
erFull table as it contains one record for every record in Worker
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(each worker has exactly one job). The records in WorkerFull con-
tain all the worker and workplace attributes. Records that share the
same workplace ID represent the workforce of that establishment.

Every cell (vI ,vW ) in the marginal query qVI∪VW (D) (as in
Definition 2.1) represents the number of workers matching the cri-
teria in vI who work in establishments matching the criteria in vW .
The output is employment counts stratified by employee attributes
in VI and workplace attributes VW .

3.2 Usage Scenarios
Researchers and analysts working with these data request an-

swers to one or more marginal queries and use these summary tab-
ulations as inputs to further data analysis. In this paper, we focus on
analyzing the privacy and utility tradeoffs from releasing the output
to one marginal query. Analyzing the privacy of multiple queries
is a straightforward application of Theorem 2.1, since our privacy
definitions also satisfy sequential composition like differential pri-
vacy. The examples of queries and protection parameters provided
here are meant to illustrate our methods. We have made no rec-
ommendation to the Census Bureau regarding the set of queries,
methods, and privacy parameters to use for a full implementation.

We highlight two application scenarios that use summary tables
computed from LODES.
Resource Allocation: LODES data are used for a number of plan-
ning and development purposes. We consider an example in disas-
ter assistance that motivates our use of L1 error, as a measure for
data accuracy. Experiments in Section 10 will explore the effect of
privacy parameters on L1 error.

The Federal Emergency Management Agency (FEMA) uses Cen-
sus population count data to evaluate requests for a disaster decla-
ration, which permit federal cost sharing of 75%, or even up to 90%
in the most severe cases. Under the Robert T. Stafford Disaster Re-
lief and Emergency Assistance Act, FEMA uses the cost estimate
of $3.50 per capita as an indicator that a disaster is of such size that
it might warrant Federal assistance.3 For determinations, FEMA
divides the Preliminary Damage Assessment by the 2010 Census
population count for one or more counties. FEMA participates in a
Census Bureau program, OnTheMap for Emergency Management
[3], to release queries of LODES and population data concurrently
with the designation of emergencies and disasters.4

If the threshold were applied to jobs rather than population, er-
rors in the count would affect the hypothetical threshold for a disas-
ter declaration for that area. Positive count errors would result in a
higher damage threshold and would require a larger magnitude dis-
aster for assistance, while negative errors would imply the opposite.
Both positive and negative errors could result in the misallocation
of funds relative to the intent of such a program, with each job in
error having a net social cost of $3.50.
Rankings: Users are often interested in comparing counts across a
list of units. As a well-known example, Forbes magazine regularly
publishes rank-ordered national lists of cities by various attributes
within city-size classes. The OnTheMap web tool [4] invites users
to rank the LODES job counts of a series of areas from largest to
smallest. A data user may specify a domain of comparison by se-
lecting a standard geography (e.g. state, Congressional District,
metropolitan area) or hand drawing a polygon. Within the selec-
tion area, the user can perform an Area Comparison Analysis for a
work area and further specify the types of areas to compare from

3For the present analysis, we use the county level threshold of
$3.50 per capita, which applies to major disasters declared on or
after October 1, 2013. See [9].
4Note that we are not making any statement about the appropriate
factors to consider for disaster declarations.

another list of standard geographies. For example, a business might
be interested in the ranked order of Places (e.g., cities, towns, and
Census Designated Places) by job count, within a state, for decid-
ing where to open a new establishment. Given these parameters,
OnTheMap returns the ranked list of areas, or Places in the ex-
ample, in descending order by work area job count. Exercises in
Section 10 will use Spearman’s rank-order correlation to explore
the accuracy of ranked lists produced from LODES data.

4. PRIVACY REQUIREMENTS
We derive our privacy requirements from relevant U.S. laws. We

first discuss the general privacy requirements, then formalize them
using the Pufferfish framework.

4.1 Generic Legal Environment
Information on workers and firms is protected by several sections

of the U.S. Code. Title 13 Section 9 [1, 5] mandates confidentiality
protections for individual and business information collected by the
Census Bureau. Under Title 13, the Census Bureau may not “make
any publication whereby the data furnished by any particular esta-
blishment or individual under this title can be identified.” The Dis-
closure Review Board (DRB) at the Census Bureau approves the
release of data that, in its view, satisfy these statutory confidential-
ity protection requirements.

The LEHD Infrastructure Files are derived from both employer
and job (ER-EE) level data, and, thus, Title 13 Section 9 protections
apply. Over the years, the DRB has interpreted the statute to require
the following set of protections.
• The existence of a job held by a particular individual is confi-

dential and must not be disclosed.
• The existence of an employer business as well as its type (or

sector) and location is not confidential.5

• The data on the operations of a particular business must be pro-
tected. In our context, that means that characteristics of an esta-
blishment’s workforce (e.g., total employment and all disaggre-
gations like number of female employees of age 20-25) must be
protected.

Appendix A discusses how these statutory confidentiality require-
ments have been interpreted over the past half century, and the de-
velopment of SDL techniques that uphold them. However, none of
the prior interpretations or techniques have attempted to prove for-
mal statements about the privacy that is guaranteed to individuals
or businesses. We show (Section 5) that the SDL techniques cur-
rently used to publish ER-EE data may allow an informed attacker
to infer confidential properties like the exact total employment of
an establishment, or whether a certain employee is employed by a
specific employer. We first present our formalization of the privacy
requirements.

4.2 Formal Privacy Desiderata
We propose to design algorithms for releasing counts from ER-

EE data that can provide provable guarantees of the following pri-
vacy desiderata. Our discussion focuses on formulating privacy
requirements for a one-time release by the statistical agency using
an algorithm denoted by A. Our privacy notions handle multiple
releases through composition rules. We model the requirements
based on the Pufferfish privacy framework [34, 35].
Informed Attacker: National statistical agencies are concerned
about two kinds of attackers – uninformed and informed. Unin-

5This principle is also the basis of confidentiality protections for
the Economic Census and the County Business Patterns [7].
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formed attackers can access the output of the algorithm A, but may
not possess detailed background knowledge about specific individ-
uals and establishments in the data. Informed attackers are more
powerful. They possess specific knowledge about individual em-
ployees or employers, or statistics about those in the dataset. Ex-
amples of such attackers include a group of employees who would
like to determine a private attribute of their co-worker, or one (or
more) employer(s) attempting to learn detailed statistics about a
competing employer. Our goal is to ensure the confidentiality of
employer and employee characteristics from such attackers.

We assume the adversary knows the set of all establishments (say
E), and their public attributes (location, industry code and owner-
ship). The attacker also knows the universe of all workers U . Each
workerw ∈ U has a set of private attributesA1 . . . Ak (like age and
sex). We add another attribute with domain E ∪ ⊥ that represents
whether w works in one of the establishments in E , or not.

For each employee w, the attacker’s belief is defined as πw, a
probability distribution over all the values in T = (E ∪ ⊥) ×
A1 × A2 × . . . × Ak. θ =

∏
w∈U πw represents the adversary’s

belief about all employees in the universe U . That is, the adver-
sary possesses no knowledge correlating employees. We denote
by Θ = {θ}, the set of all possible adversarial beliefs that as-
sume no correlations between employees and between employers.
Nevertheless, Θ includes informed attackers who may know ex-
act information about all but one employee, and those who know
exact information about all but one employer. We note that Θ con-
tains very strong attackers. Algorithms that can provably protect
against such attackers while ensuring error comparable to current
SDL techniques would underscore the possibility that provable pri-
vacy could be achieved at low utility cost.

We distinguish a subset of attackers Θweak ⊂ Θ as weak attack-
ers. Weak attackers have no prior knowledge over worker attributes
– i.e., all workers are the same in their eyes. The weak attacker may
still have the same detailed knowledge about establishments as our
general attacker. We capture a weak adversary by requiring that the
prior for each worker πw be a product of π(1,e) (worker indepen-
dent prior over establishments), and π(2,w) (a uniform prior over
all worker attributes). We use these definitions to define a weaker
privacy notion.
What should we protect? We now specify which properties of the
data we need to protect against such adversaries.

1. No re-identification of individuals: We would like to ensure
that adversaries do not learn too much additional information about
any single employee in the dataset when an algorithm A operates
on the datasetD. In particular, they should not be able to determine
(i) whether or not an employee is in or out of the dataset (⊥ versus
not), (ii) whether or not an employee works at a specific (type of)
employer (E versus E −E, where E ⊆ E), and (iii) whether or not
the employee has certain characteristics (e.g., Hispanic with age
greater than 35).

We formalize this as follows. For any pair of values a, b ∈ T , we
require that the ratio of the adversary’s posterior odds (after seeing
the output A(D)) that a worker record takes the value w = a vs
w = b to the adversary’s prior odds that w = a vs w = b be
bounded at a known level. That is, we want to bound the Bayes
factor: the ratio of the posterior odds to the prior odds, and this
bound is the privacy-loss budget.

DEFINITION 4.1 (EMPLOYEE PRIVACY REQUIREMENT).
For randomized algorithmA, if for some ε ∈ (0,∞), and for every
employee w ∈ U , for every adversary θ ∈ Θ, for every a, b ∈ T
such that Prθ[w = a] > 0 and Prθ[w = b] > 0, and for every

output ω ∈ range(A):

log

(
Prθ,A[w = a|A(D) = ω]

Prθ,A[w = b|A(D) = ω]

/
Prθ[w = a]

Prθ[w = b]

)
≤ ε (3)

Then the algorithm A protects employees against informed attack-
ers at privacy-loss level ε.

Definition 4.1 bounds the logarithm of the maximum Bayes fac-
tor an informed attacker can achieve. This implies, as a conse-
quence of the general bound on privacy loss, that an informed at-
tacker can’t learn any property of a worker record with probability
1 after seeing the output of the algorithms unless the attacker al-
ready knew that fact, as reflected in his prior odds.

2. No precise inference of establishment size: An informed
attacker should not infer the total employment of a single esta-
blishment to within a multiplicative factor of α. We do not require
stronger privacy of the form “presence of an establishment must not
be inferred,” since (a) the existence of an employer establishment is
considered public knowledge, (b) the data are an enumeration of all
employer establishments, and (c) whether or not an establishment
is big or small is well known. This requirement balances the legal
need for protecting the operations of a business with widespread
knowledge of approximate employment sizes of establishments.

We can formalize the employer-size privacy requirement as fol-
lows. For any establishment e, let |e| denote the random variable
representing the number of workers employed at e. We define the
requirement for both informed and weak adversaries.

DEFINITION 4.2 (EMPLOYER SIZE REQUIREMENT). Let e
be any establishment in E . A randomized algorithm A protects
establishment size against an informed attacker at privacy level
(ε, α) if, for every informed attacker θ ∈ Θ, for every pair of num-
bers x, y, and for every output of the algorithm ω ∈ range(A),∣∣∣∣log

(
Prθ,A[|e| = x|A(D) = ω]

Prθ,A[|e| = y|A(D) = ω]

/
Prθ[|e| = x]

Prθ[|e| = y]

)∣∣∣∣ ≤ ε (4)

whenever x ≤ y ≤ d(1+α)xe andPrθ[w = x], P rθ[w = y] > 0.
We say that an algorithm weakly protects establishments against an
informed attacker if the condition above holds for all θ ∈ Θweak.

As in Definition 4.1, this definition bounds the maximum Bayes
factor the informed attacker can learn within the universe of allow-
able data tables. Unlike the case of individuals, Definition 4.2 does
allow an adversary to learn about the gross size of an employer
establishment.

3. No precise inference of establishment shape: An informed
attacker cannot precisely infer the composition of a single esta-
blishment’s workforce (e.g., the fraction of males who have a bach-
elor’s degree or the fraction with Hispanic ethnicity). We call the
distribution of an establishment’s workforce based on worker char-
acteristics its shape. One can think of this requirement as protect-
ing the distribution of characteristics of the workforce, whereas the
previous requirement protected the magnitude of each character-
istic. We believe this shape requirement implements the legally
mandated confidentiality of an establishment’s operating charac-
teristics. The definition bounds the maximum Bayes factor that
the informed adversary can learn within the set of allowable inputs.

DEFINITION 4.3 (EMPLOYER SHAPE REQUIREMENT). Let e
be any establishment in E . Let eX denote the subset of employees
working at e who have values in X ⊂ A1 × . . .× Ak. A random-
ized algorithmA protects establishment shape against an informed
attacker at a privacy level of (ε, α), if for every informed attacker
θ ∈ Θ, for every property of a worker record X , for every pair of
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Name Does this satisfy requirement on
Individuals Emp. Size Emp. Shape

Input Noise Infusion No No No
(Sec. 5)
Differential Privacy Yes No No
(individuals, Sec. 6)
Differential Privacy Yes Yes Yes
(establishments, Sec. 6)
ER-EE-privacy Yes Yes Yes
(Sec. 7)
Weak ER-EE Yes Yes? Yes
privacy (Sec. 7)

Table 1: Privacy definitions and requirements they satisfy.
? Privacy requirement is satisfied under weak adversaries.

numbers 0 < p ≤ q ≤ min(1, (1 + α)p), for every output of the
algorithm ω ∈ range(A), and for every natural number z,∣∣∣∣log

(
Prθ,A[|eX |/|e| = p, |e| = z|A(D) = ω]

Prθ,A[|eX |/|e| = q, |e| = z|A(D) = ω]

/
Prθ[|eX |/|e| = p, |e| = z]

Prθ[|eX |/|e| = q, |e| = z]

)∣∣∣∣ ≤ ε (5)

wheneverPrθ
[
|eX |
|e| = p, |e| = z

]
, P rθ

[
|eX |
|e| = q, |e| = z

]
> 0.

Table 1 summarizes whether certain SDL and formal privacy
methods satisfy our privacy desiderata. The following sections pro-
vide definitions and analysis required to interpret this table.

5. PROTECTION BY CURRENT SDL
We discuss how LODES data are protected using the current

SDL techniques, and how they avoid exact disclosures in Sec. 5.1.
Examples of potential inference attacks are outlined in Section 5.2.

5.1 Input Noise Infusion
A popular technique for protecting ER-EE data is input noise

infusion [10, 12], where the database is perturbed before answer-
ing queries. Every establishment w is assigned a unique distor-
tion factor fw, bounded away from 1. The unique, time-invariant,
confidential distortion factor fw, is within the union of the ranges
[1− t, 1− s] ∪ [1 + s, 1 + t]. The parameters 0 < s < t are kept
confidential in order to limit inference attacks. Zero counts are left
unmodified.

More formally, consider a table WorkplaceFull that has one row
per workplace w, as well as a histogram h(w) of counts of work-
ers employed at w cross-tabulated over all combinations of worker
attributes. Let c denote one of the cells (combinations of worker
attributes like males, age 16-18, Hispanic, etc.), and let h(w, c)
denote the count for workplace w in cell c. Counts in h(w) are
perturbed to get h?(w) as follows.

h?(w, c) = fw · h(w, c) (6)

To limit re-identification of individual workers, additional out-
put perturbation is employed for small counts. Specifically, when a
marginal query qV is posed to the system (say employments counts
tabulated by age, sex, and place), both the true answer qV (D) as
well as a noise infused answer q?V (D) are computed. The latter
is constructed by adding up appropriate counts from h?(w) for
the establishments that satisfy the workplace criteria. If for a cell
v in the output, the true count qV (D,v) lies within (0, S), then
the noise infused answer q?V (D,v) is replaced by a sample drawn
from a posterior predictive distribution that always outputs integers

1, ..., bSc. The small cell limit S is set to 2.5 for our dataset. Note
that zero counts are unperturbed.

Privacy Properties
• No Exact Disclosures about Establishments: As a direct con-

sequence of the gap around 1 in the distortion factor fw ∈
[1 − t, 1 − s] ∪ [1 + s, 1 + t], an establishment’s actual em-
ployment count is never used in any computations that produce
tabular summaries. Hence, even if some cell count in a marginal
query contains only one establishment, its employment count is
not exactly revealed. The statutory requirement not to publish
exact data about establishments is fulfilled by using the distor-
tion factors s and t.
• No Re-identification of Employees without Background knowl-

edge: Given the output of a single marginal query, an adversary
can not re-identify the presence of a specific worker without
additional background knowledge. This is ensured by replac-
ing small counts using draws from a different distribution.

Nevertheless, the aforementioned scheme is vulnerable to infer-
ence attacks, especially in the presence of background knowledge,
as discussed next.

5.2 SDL Vulnerabilities
The following two properties of the input noise infusion scheme

allow inference about individuals, establishment sizes and esta-
blishment shapes:
• The same distortion factor fw is used to perturb all the cells

counts h(w) for an establishment w.
• If h(w) = 0, then h?(w) = 0.

We first note that the privacy requirement on establishment shape
(Definition 4.3) is not satisfied. Consider a marginal query qVI∪VW ,
where VI are attributes of the employee and VW are attributes of the
establishment. Suppose there is one combination vW ∈ dom(VW )
such that exactly one workplace w fits that criterion.6 Thus, counts
output by the marginal query for all cells (vW , c), for all c ∈
dom(VI) would represent employment counts for a single work-
place. Whenever all these cell counts are greater than the small cell
limit S, they are precisely the true count multiplied by the same
(but unknown) noise factor fw. This reveals the shape exactly.

Next, let us consider the privacy requirement on establishment
size (Def. 4.2). Consider a combination vW ∈ dom(VW ) such
that exactly one workplace w fits that criterion. Additionally, sup-
pose the attacker knows one of the cell counts (vW , c) truthfully
(say, the attacker knows there are a 100 males, age 20-25). If this
count is greater than the small cell limit S, then the adversary can
reconstruct the noise factor fw. Knowledge of fw and the exact
shape allows the attacker to reconstruct the counts in all other cells
as well as the total size of the establishment’s workforce.

The agencies that use input noise distortion as a method of SDL
understand this attack. It is not currently considered a violation
of the relevant data protection statutes because the exact disclosure
occurs only when one of the counts h(w, c) is known exactly for
some cell c. The agencies assume that the only users who possess
exact information on c are employees of a business that reported
the data. If those employees are obligated to keep such information
confidential, then it is the employer’s duty to prevent the attack or
prosecute the attacker. If they are not, then the data item itself is no

6The number of establishments in a cell are not published for the
dataset we consider in this paper. However, there are combinations
of VW that contain only one workplace, and an adversary could
know this.
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longer confidential, and statutory protection doesn’t apply because
the employer released the value.

Next, we show that individual employees could be re-identified
by informed attackers (thus violating Definition 4.1). Suppose a
marginal query qVI∪VW with one combination vW ∈ dom(VW )
fits exactly one workplace w. Additionally, suppose an adversary
knows that there is only one employee in w with a college degree.
If VW contains the education attribute, then the only cells that cor-
respond to having a college degree in h(w, c) with positive counts
are those that correspond to the true values of the other attributes for
that employee. Since zero counts are preserved in the current SDL,
the attacker can infer the other true attributes for this employee by
looking at the published counts. Current publications of the ER-EE
data we consider are vulnerable to this attack, but can be thwarted
by the algorithms we propose.

6. APPLYING DIFFERENTIAL PRIVACY
In this section we directly apply differential privacy to our prob-

lem by considering the entities in our problem (employers and em-
ployees) to be nodes in a bipartite graph connected by edges that
represent jobs. Thus, work applying differential privacy to graphs
can now be brought to bear on our problem [18, 20, 32, 31].

Two standard variants considered in the context of graphs are
edge and node differential privacy. Edge differential privacy con-
siders neighboring graphs that differ in the presence of a single
edge. In our context, that corresponds to adding or removing a sin-
gle job (hence, worker) from our database. We can show that this
definition is sufficient to satisfy the employee privacy requirement
(Definition 4.1). However, edge differential privacy does not ensure
privacy of establishments (Definitions 4.2 and 4.3; see Claim B.1
in Appendix B). For instance, under this definition an adversary
is allowed to compute the total employment count at a single esta-
blishment by adding to the true count noise drawn from Lap(1/ε).
We can show that the noise added is at most log(1/p)

ε
with proba-

bility 1− p (i.e., at most 5 for ε = 1 and p = 0.01). Knowing that
the total employment in an establishment is 10,000±5 is almost as
good as knowing the true count, and this inference continues to im-
prove as the establishment size increases; hence, it cannot respect
a fixed privacy-loss budget for establishments.

Node differential privacy considers neighboring graphs that dif-
fer in the presence of an single node and all the edges incident to
it. In our context that corresponds to removing or adding a single
employer along with all the workers who are employed at this em-
ployer. Node differential privacy is much stronger, and in the con-
text of our problem will satisfy the employee and employer privacy
requirements (Definitions 4.1, 4.2 and 4.3). However, this comes at
a huge cost to utility.

Since there is no a priori bound on the number of edges inci-
dent on each node (other than the number of nodes in the graph),
the Laplace mechanism is inapplicable for edge counting queries
under node-differential privacy. Hence, an alternate method to per-
turb counts is projection. Projection techniques [18, 20, 32] modify
the graph by adding or deleting edges and nodes until the maximum
degree of a node is bounded by a small number θ. Edge counting
queries on this bounded-degree graph have bounded sensitivity (of
θ) and hence can be answered by adding noise from Laplace(θ/ε).
For instance, the truncation method [32] projects the graph by re-
moving nodes until all nodes have degree less than θ. When θ is
small, a significant fraction of the nodes with degree larger than θ
will be excluded from the count query. In our context, this would
severely distort the characteristics of large employers. Preserving
properties of these establishments is important for economic stud-

ies. When θ is large, the noise added would also be very large,
adding too much noise to cells with small businesses to be useful.

Using this technique on our data with θ = 1000 in the context of
ER-EE data results in removing all establishments with more than
1,000 employees; between 740 and 815 establishments would be
removed.7Moreover, in a tabular summary of counts by place, in-
dustry and ownership, over 93% of the counts have a total count
less than a 1000. Adding Laplace noise with sensitivity of a 1000
(even with ε = 1) would result in expected noise greater than the
cell counts. We present further empirical evidence of the error in-
curred by this technique in Section 10.

7. FORMAL PRIVACY DEFINITION
We present two refinements of our privacy definitions that ensure

protection against informed and weak adversaries, respectively, as
we have defined them. Our new definitions are in Section 7.1; their
privacy semantics are in Section 7.2. Our formal privacy definitions
ensure that the requirements in Section 4 are satisfied.

7.1 Privacy for Employer-Employee Data
We denote the universe of establishments as E and the universe

of workers as U .

DEFINITION 7.1 (STRONG α-NEIGHBORS). Let D and D′

be two ER-EE tables that differ in the employment attribute of ex-
actly one record (say corresponding to establishment e). Let E
denote the set of workers employed at e in D, and E′ denote the
set of workers employed at e in D′. Then D and D′ are strong α-
neighbors ifE ⊆ E′, and |E| ≤ |E′| ≤ max((1+α)|E|, |E|+1)

We refine our privacy definition using definition 7.1:

DEFINITION 7.2 ((α, ε)-ER-EE PRIVACY). A randomized al-
gorithmM is said to satisfy (α, ε)-ER-EE Privacy, if for every set
of outputs S ⊆ range(M), and every pair of strong α-Neighbors
D and D′, we have

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S]

First, note that every pair of neighboring ER-EE tables must differ
in the presence or absence of at least one worker. Next, note that
neighboring tables do not differ in either the number of establish-
ments or the values of their public attributes. Definition 7.1 bounds
changes in a subset of the workforce of an establishment by α times
the total workforce.

THEOREM 7.1. Let M be an algorithm satisfying (α, ε)-ER-
EE privacy. Then,M satisfies the individual privacy requirement
at privacy level ε, and the establishment size and shape require-
ments at privacy level (ε, α).

When releasing counts over both establishment and worker at-
tributes, this definition 7.2 is too strong to provide useful results.
We further refine our definitions.

DEFINITION 7.3 (WEAK α-NEIGHBORS). Let D and D′ be
two ER-EE tables such that they differ in the employment attribute
of exactly one record (say corresponding to establishment e). Let
φ : U → {0, 1} be any property of a worker record, and for any
S ⊂ U , let φ(S) =

∑
r∈S φ(r). Let E denote the set of workers

employed at e in D, and E′ denote the set of workers employed at
e in D′. D and D′ are called weak α-neighbors if for every φ

φ(E) ≤ φ(E′) ≤ max((1 + α)φ(E), φ(E) + 1) (7)
7The number of establishments with size > 1000 is a sensitive
count. This count was computed using the Laplace mechanism with
ε = 0.1. The reported range is the 95% confidence interval.
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Note that any property of the workforce can be represented using
the function φ. The total employment count can be represented by
the constant function that always outputs 1 for any record. The
property “females with a college degree” can be represented by a φ
that returns 1 for the records satisfying that property. Definition 7.3
bounds changes in every subset of the workforce corresponding to
some of attribute values proportionally, by a factor of (1+α). This
neighboring definition can be used to give a weaker privacy notion.

DEFINITION 7.4 (WEAK (α, ε)-ER-EE PRIVACY). A random-
ized algorithmM is said to satisfy weak (α, ε)-ER-EE Privacy, if
for every set of outputs S ⊆ range(M), and every pair of weak
α-Neighbors D and D′, we have

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S]

THEOREM 7.2. Let A be an algorithm satisfying weak (α, ε)-
ER-EE privacy. Then, A satisfies the individual privacy require-
ment at privacy level ε and the establishment shape requirement at
level (ε, α). A satisfies the establishment size requirement at level
(ε, α) for weak adversaries.

The difference between the strong and weak variants of the re-
quirement is the following. Suppose the attacker knows there are
at least ∆ 19 year-old employees in an establishment, and knows
the exact counts of employees by age for all other ages (totaling to
x−∆). Thus, the attacker’s only uncertainty is about the number of
19 year-olds. Then, Definition 7.2 requires that the attacker should
not be able to distinguish between whether the number of 19 year-
old employees is ∆ or ∆′ for all ∆ ≤ ∆′ ≤ ∆ + α · x. While
one might expect few 19 year-olds in an establishment, algorithms
satisfying Definition 7.2 will not be able to release that fact unless
α is very small.

Under Definition 7.3 the attacker should not be able to distin-
guish between whether the number of 19 year-old employees is ∆
or ∆′ for all ∆ ≤ ∆′ ≤ (1 + α)∆.

Keeping α fixed, larger ε values result in more privacy loss, since
adversaries can better distinguish neighboring databases. On the
other hand, when keeping ε fixed, larger α values result in less
privacy loss.

7.2 Privacy Semantics
Setting α to 0 and∞ results in neighboring tables that differ in

the presence or absence of one worker and one establishment, re-
spectively. These choices correspond to edge- and node-differential
privacy discussed in Section 6

We can also bound the extent to which an adversary can infer
properties of employees and establishments beyond just neighbor-
ing databases. Both neighboring definitions, 7.1 and 7.3, induce a
metric d(·) over possible databases.

We can use this metric to reason about which inferences an ad-
versary can make. For mechanismM satisfying one of our privacy
definitions,

Pr[M(D) ∈ S] ≤ eε·d(D,D
′) · Pr[M(D′) ∈ S]. (8)

In particular, there are two things to note. First, the distance be-
tween databases that differ in workplace attributes is infinite (we
can disclose this information because the workplace attributes are
public). Next, suppose D and D′ are neighbors with different em-
ployment sets Ew and E′w for establishment w, and |Ew| = x and
|E′w| = (1 +α)k ·x. Then, an adversary can’t distinguish between
D and D′ based on an output with log-odds greater than ε · k; that
is, ε · k bounds the adversary’s Bayes factor.

7.3 Composition

THEOREM 7.3. Let M1 and M2 be (α, ε1)- and (α, ε2)-ER-
EE private algorithms. Releasing the outputs ofM1(D) andM2(D)
results in (α, ε1 + ε2)-ER-EE privacy. The same holds for weak
(α, ε)-ER-EE privacy.

Differentially private algorithms also satisfy parallel composi-
tion, which means that releasing the result of ε-differentially private
algorithms on disjoint sets of records D1 and D2 also results in ε-
differential privacy. The same is true for both Definitions 7.2 and
7.4 if the records in D1 and D2 pertain to distinct establishments.

THEOREM 7.4. Let D1 and D2 represent subsets of records
from the ER-EE dataset that pertain to distinct sets of establish-
ments. Let M1 and M2 be (α, ε)- and (α, ε)-ER-EE private al-
gorithms. Releasing the outputs ofM1(D1) andM2(D2) results
in (α, ε)-ER-EE privacy. The same holds for weak (α, ε)-ER-EE
privacy.

Parallel composition is nuanced when D1 and D2 could pertain
to distinct sets of workers from the same sets of establishments
(e.g., males in New York and females in New York).

THEOREM 7.5. Let D1 and D2 represent subsets of records
from the ER-EE dataset that pertain to distinct workers, but have
records that arise from the same establishment. LetM1 andM2

be (α, ε)- and (α, ε)-ER-EE private algorithms. Releasing the out-
puts of M1(D1) and M2(D2) results in (α, ε)-ER-EE privacy.
The same does not hold for weak (α, ε)-ER-EE privacy.

8. ALGORITHMS
We next present algorithms for answering queries under both

(α, ε)-ER-EE privacy and weak (α, ε)-ER-EE privacy. Our algo-
rithms describe how to answer a single count query (e.g., number of
workers in the age 25-35 with a college degree who are employed
in publicly-owned establishments in New York). This would cor-
respond to a single cell in a marginal query (e.g., {place, owner-
ship, age, education}). We denote single counting queries as qv ,
where v ∈ dom(V ) and qV is the marginal query. These algo-
rithms can be used to release all the counts in the marginal using
the composition properties described in Section 7.3. algorithms
for releasing single counts can be parallel-composed under (α, ε)-
ER-EE privacy for all marginals. However, algorithms for releas-
ing single counts can be parallel-composed under weak (α, ε)-ER-
EE privacy for marginals containing only establishment attributes,
since such cells aggregate over distinct subsets of employers. Using
algorithms for releasing a single count under weak (α, ε)-ER-EE
privacy to release a marginal containing worker attributes would
result in an effective privacy-loss parameter of d · ε, where d is the
domain size of the worker attributes in the marginal query.

8.1 Log-Laplace Algorithm
The global sensitivity of a count query under Definitions 7.2 and

7.4 is unbounded; if the count is x, the sensitivity can be as large
as αx. However, the logarithm of the count has a low global sensi-
tivity of ln(1 + α). Thus the Log-Laplace mechanism (see Algo-
rithm 1) adds Laplace noise to the log of the count.

THEOREM 8.1. Suppose qv is a query over only establishment
attributes. Then, releasing qv using Algorithm 1 satisfies (α, ε)-
ER-EE privacy.

Suppose qv is a query over both establishment attributes and
employee attributes. Then, releasing qv using Algorithm 1 satisfies
weak (α, ε)-ER-EE privacy.
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Algorithm 1 Log-Laplace Mechanism
Input: : n : the sum of employment counts for a set of cells, α, ε: privacy

parameters
Output: : ñ: the noisy employment count

Set γ ← 1/α
`← ln(n+ γ)
Sample η ∼ Laplace(2 ln(1 + α)/ε)
ñ← e`+η − γ

All proofs are deferred to the Appendix. While the original
Laplace mechanism is unbiased (the expectation of the noisy sum
equals the true sum), the Log-Laplace mechanism is not. In partic-
ular we can show:

LEMMA 8.2. Let x denote a real number, and x̃ the random
variable denoting the output of the Log-Laplace mechanism. Let
λ = 2 ln(α+ 1)/ε. Then, when λ < 1, E[x̃] + γ = (x+ γ)/(1−
λ2). When λ ≥ 1, E[x̃] is unbounded.

THEOREM 8.3. For qv , let x̃ denote the output of the Log-Laplace
mechanism and x denote the true answer of the query. The ex-
pected squared relative error of the Log-Laplace mechanism for qv
is bounded when λ = 2 ln(α+ 1)/ε is less than 1/2, and is given
by:

Erel(qv) = max
D

(
(x− x̃)2

x2

)
≤

(2λ2 + 4λ4)(1 + γ)2

(1− 4λ2)(1− λ2)
(9)

8.2 Smooth Sensitivity-based Algorithms
We next derive a mechanism using an extension of the smooth

sensitivity framework [38]. The smooth sensitivity framework adds
noise based on local sensitivity of the input database rather than
global sensitivity across all databases. While local sensitivity can
be much smaller than global sensitivity, adding noise proportional
to local sensitivity does not ensure differential privacy, and hence,
local sensitivity must be “smoothed.”

DEFINITION 8.1 (LOCAL SENSITIVITY). Let q be a query, I
be a domain of datasets, and nbrs(x) denote the set of neighbors
of x according to the appropriate definition; e.g. Definition 7.1 or
7.3. The local sensitivity of query q for a dataset x ∈ I is

LSq(x) = max
y:y∈nbrs(x)

‖q(x)− q(y)‖1

Global sensitivity is the maximum local sensitivity over all data-
bases. Nissim et al. [38] show that it is sufficient to add noise
proportional to any smooth function that upper bounds local sensi-
tivity. The smallest such upper bound is called the smooth sensitiv-
ity.

DEFINITION 8.2. Let q be a query and b a smoothing parame-
ter. Let I denote the universe of all datasets. The b-smooth sensi-
tivity of query q with respect to database x is defined as

S∗q,b(x) = max
j
e−jbA(j)(x),

where A(j)(x) = max
y∈I:d(x,y)≤j

LSq(y),

and d(x, y) is the smaller integer ` such that there exist databases
x = x0, x1, . . . , x` = y, such that for all i, xi−1 and xi are
neighbors according to either Definition 7.1 or 7.3.

We next define admissable distributions, and show that adding
noise proportional to an admissible distribution preserves privacy.
Our definition is a slight generalization of [38] that is more flexible

and will result in better error for our application. In particular, the
definition of admissible distributions in [38] splits the total ε-budget
equally between the sliding and dilation properties. We extend this
definition to allow a flexible split of the budget.

DEFINITION 8.3. Let ε1 and ε2 be a division of the budget such
that ε1 + ε2 ≤ ε. A probability distribution h is (a, b)-admissible
with respect to ε, where a and b are functions δ, and of ε1 and ε2
respectively, if ∀λ ∈ R,∆ ∈ Rd with |λ| ≤ b and ‖∆‖1 ≤ a, and
∀S ⊆ Rd,

Pr
Z∼h

[Z ∈ S] ≤ eε1 Pr
Z∼h

[Z ∈ S + ∆] +
δ

2
, and (10)

Pr
Z∼h

[Z ∈ S] ≤ eε2 Pr
Z∼h

[
Z ∈ S · eλ

]
+
δ

2
. (11)

We can now adapt Lemma 2.6 from [38] to show that adding
noise from admissible distributions, scaled by the smooth sensitiv-
ity, generates provably private algorithms.

THEOREM 8.4. Suppose h is an (a, b)-admissible probability
distribution with δ = 0, and Z ∼ h. For query q, let S(x) be
a b-smooth upper bound on the local sensitivity of q. Then, the
algorithmM(x) = q(x)+ S(x)

a
·Z satisfies (α, ε)-ER-EE privacy.

We now compute the b-smooth sensitivity of our queries and de-
scribe an admissible distribution. For our problem, the local sensi-
tivity itself is the smooth sensitivity.

LEMMA 8.5. Let qv be a query on x. Let xv be the maximum
number of workers belonging to a single workplace and matching
the conditions in v. Then, the b-smooth sensitivity of x, S∗v,b(x), is

S∗v,b(x) =

{
max(xv · α, 1) if eb ≥ (1 + α),

unbounded otherwise.
(12)

LEMMA 8.6. Let ε1 + ε2 ≤ ε. h(z) ∝ 1
(1+|z|γ)

is ( ε1
1+γ

, ε2
1+γ

)-
admissible for γ > 0 (δ = 0).

Combining Theorem 8.4 and Lemmas 8.5 and 8.6 gives us the
following algorithm. We use γ = 4 to ensure that the mean and
variance of the noise distribution are bounded. Note that privacy is
guaranteed only when α + 1 < eε/5. Values of α and ε not satis-
fying this inequality are not allowed by the algorithm. When this
condition is met, we set ε2 such that b is as low as possible without
violating the inequality in Equation 12. Since only a contributes
directly to the error of the algorithm, this ensures that the ε budget
is used efficiently to minimize error.

Algorithm 2 Smooth Gamma
Input: : n : true count, α, ε: privacy parameters, α+ 1 < eε/5

Output: : ñ: noisy count
Sample η ∼ 1

(1+|z|4)

ε2 ← 5 · ln(α+ 1)
ε1 ← ε− ε2 {ε1 > 0 by the condition in the Input.}

ñ← n+
S∗v,ε2/5

(x)

ε1/5
η,

LEMMA 8.7. Suppose qv is a query over only establishment at-
tributes. Then releasing qv using Algorithm 2 satisfies (α, ε)-ER-
EE privacy.

Suppose qv is a query over both establishment and individual at-
tributes. Then releasing qv using Algorithm 2 satisfies weak (α, ε)-
ER-EE privacy.

LEMMA 8.8. Algorithm 2 is unbiased and has expected L1 er-
ror of O(xv·α

ε
+ 1

ε
).
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9. APPROXIMATING PRIVACY
A standard relaxation of differential privacy is to allow for a

small failure probability of δ that the attacker can distinguish neigh-
boring datasets based on an output. We can similarly define (α, ε, δ)-
ER-EE privacy.

DEFINITION 9.1 ((α, ε, δ)-ER-EE PRIVACY). A randomized
algorithmM is said to satisfy (α, ε, δ)-ER-EE Privacy, if for ev-
ery set of outputs S ⊆ range(M), and every pair of strong α-
Neighbors D and D′, we have

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ

Weak (α, ε, δ)-employer employee privacy is defined analogously.
Exact records may be released when δ = Ω(1/n) (where n is

the number of records). δ is the probability that a mechanism gives
no privacy guarantee. Therefore if δ > 1/n, a mechansim which
releases the exact values for a δ fraction of the records (and 0 for
all other records) satisfies this privacy definition.
δ increases rapidly with database distance. We would like to

show an analogue to Equation 8 to show how δ decays with dis-
tance. That is, supposeM is a mechanism which satisfies (α, ε, δ)-
ER-EE privacy, and suppose for two databasesD andD′, d(D,D′) =
d. Then, ∀S ⊆ range(M),

Pr[M(D) ∈ S] ≤ eεd · Pr[M(D′) ∈ S] + Ω(δe(d−1)ε). (13)

Note that for a high enough distance, the term Ω(δe(d−1)ε) may
become greater than one. This means that for database D′ at least
this far from D, we may allow an adversary to rule out without a
doubt D′. This never happens under non-approximate privacy. An
adversary must always have some amount of uncertainty between
a pair of databases no matter how far apart.

Despite these drawbacks, allowing a small probability of failure
can greatly increase the utility of an algorithm while still providing
a provable guarantee. We use the framework developed in Sec-
tion 8.2 to give an approximate algorithm.

LEMMA 9.1 ([38]). The Laplace distribution, h(z) ∝ 1
2
·

ε−|z|, is (ε/2, ε
2 ln(1/δ)

)-admissible.

Using Theorem 8.4 and Lemma 8.5, we obtain Algorithm 3.

Algorithm 3 Smooth Laplace

Input: : n : true count, α, ε: privacy parameters, α+ 1 ≤ e
ε

2 ln(1/δ) .
Output: : ñ: noisy count

Sample η ∼ Laplace(1)

ñ← n+
S∗
v, ε

2 ln(1/δ)
(x)

ε/2
η,

LEMMA 9.2. Suppose qv is a query over only establishment at-
tributes. Then releasing qv using Algorithm 3 satisfies (α, ε, δ)-
employer employee privacy.

Suppose qv is a query over both establishment and individual
attributes. Then releasing qv using Algorithm 3 satisfies weak
(α, ε, δ)-ER-EE privacy.

LEMMA 9.3. Algorithm 3 is unbiased and expected L1 error is
O(xv·α

ε
+ 1

ε
).

Note that the error of Algorithm 3 does not depend on δ. There-
fore, the optimal δ for a fixed α and ε is the one which solves the
inequality in Algorithm 3 with equality. In Table 2 (in Appendix C),
we show some values of δ, ε, and α that work.

10. EMPIRICAL EVALUATION
Dataset: The data used for these experiments were a 3-state sample
from the LODES data infrastructure to which standard edits and
imputations had already been applied. The sample was taken from
the 2011 snapshot in which April 1, the first day of Quarter 2, is the
reference date. To be included jobs had to qualify as “beginning-of-
quarter” jobs, which means that the job (person-firm relationship)
had positive earnings in the reference quarter (Q2) as well as the
previous quarter (Q1). Then the assumption is that the person was
employed in the job on the first day of Q2. The count of jobs in the
sample was 10.9 million jobs in about 527,000 establishments.
Queries and Quality Measures:
• Workload 1 A marginal over all establishment characteristics:

industry sector, ownership, and location at the resolution of
places (e.g., cities and towns).
• Workload 2 Single queries over all establishment attributes,

and over the worker attributes of sex and education.
• Workload 3 The marginal over all establishment attributes, and

sex and education.
We report the cost of provable privacy as a ratio between the av-
erage L1 error (over 20 independent trials) of our provably private
algorithms divided by the L1 error of current SDL algorithm.

In addition to reporting the overall error ratio, we also compute
the error ratio stratified by place-size ranges. The strata we consider
are cells in the marginals with a population8 of 0-100, 100-10k,
10k-100k, and 100k+, respectively. Our results for Workload 3 are
discussed here, but appear in the Appendix.

Next we evaluate the cost of formal privacy in ranking tasks.

• Ranking 1 Rank all the cells in the marginal over industry sec-
tor, ownership, and location by total count in descending order.
• Ranking 2 Rank all the cells in the marginal over industry sec-

tor, ownership, and location by number of employees who are
female with a college degree in each cell in descending order.
The results of this experiment are discussed here, and the plots
appear in the appendix.

We measure error as the Spearman rank-order correlation between
the ordering based on noisy counts returned by our algorithm to the
ordering based on the counts output by the current SDL algorithm.
As in the L1 error case, we also report error stratified by place size.
Algorithms: We compare the Log-Laplace, Smooth Gamma and
Smooth Laplace algorithms. We present results for ε ∈ {0.25, 0.5,
0.67, 1.0, 2.0, 4.0} and for α ∈ {0.01, 0.05, 0.1, 0.15, 0.2}. Re-
call that for α = 0.1, for example, an adversary should not be able
to tell the difference in employments within 10% of each other. We
do not plot errors for the Log-Laplace mechanism when the expec-
tation of the noisy count is unbounded (see Lemma 8.2).

We do not vary δ for the Smooth Laplace algorithm as part of
our evaluation, since δ does not affect the amount of noise added
(and consequently does not impact the accuracy). Nevertheless, as
discussed in Section 9 and Table 2, for a given α, δ imposes a lower
bound on ε and eliminates possible choices for (α, ε) pairs. In our
figures, we report results for pairs of (α, ε) that are possible for a
high failure probability of δ = 0.05. The performance for smaller
δ values can be read off the plots by checking whether the (α, ε)
values are allowed for that δ.

We also implemented a node-differentially private algorithm (from
Section 6), and call it “Truncated Laplace”. This suppresses estab-
lishments with counts ≥ θ, for θ ∈ {2, 20, 50, 100, 200, 500}.
8Census Place total population (P0010001) as published in the
2010 Decennial Census.
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Figure 1: Average L1 error ratio of releasing employment count for Census place by NAICS sector (industry) by ownership marginal
compared to the current system.
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Figure 2: Spearman correlation between tested model and input noise infusion on the count of employment ranked for Census place
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Figure 3: Average L1 error ratio of releasing single queries of employment in the Census place by NAICS sector (industry) by
ownership by sex by education marginal, compared to the current system.
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Finding 1: For releasing marginals over only establishment at-
tributes, our algorithms perform comparably or better than the cur-
rent protection system while satisfying the strong privacy notion
given in Def. 7.2. We use ε = 2 and α = 0.1 as a baseline.
As can be seen in Figure 1, the average error of the Log-Laplace
and Smooth Gamma algorithms is within a factor of 3 of the error
of the current protection system. The Smooth Laplace algorithm
performs better than the current protection system at ε = 2 and
α = 0.1. Ranking results for establishment-attribute queries are
shown in Figure 2. Overall, the Smooth Laplace algorithm has a
correlation close to 1 when ε is at least 2, and the other two algo-
rithms are close to 1 for ε ≥ 4. For rankings involving only larger
population sizes, Smooth Laplace is close to 1 for all values of ε
tested, and the Log-Laplace algorithm is close to 1 for ε at least 1.

We also observe that our algorithms have relative error compa-
rable to that of the current protection system for a majority of the
cells. For Log-Laplace, the relative L1 is within 10 percentage
points of the relative error of SDL for 65% of the counts at α = 0.1
and ε = 2. Smooth Laplace and Smooth Gamma are within 10 per-
centage points for 75% and 29% of the counts, respectively.

Finding 2: For releasing individual queries over establishment and
worker attributes, our algorithms perform comparably or better than
the current protection system while satisfying the weaker privacy
notion given in Def. 7.4. As shown in Figure 3, the average error
of the Log-Laplace algorithm is within a factor of 3 of the error of
the current protection system. The Smooth Laplace algorithm has
nearly the same average error as the current protection system. At
ε = 4, the Smooth Laplace algorithm outperforms the current pro-
tection system for all values of α that we tested. Ranking results
are shown in Figure 5. For the overall ranking, only the Smooth
Laplace algorithm approaches relative error of 1 for ε at least 4.
Restricted to larger population sizes, both Log-Laplace and Smooth
Laplace perform well for all tested values of ε.

Finding 3: For releasing marginal queries over establishment and
worker attributes, our algorithms perform worse than the current
protection system, but can have acceptable performance at high val-
ues of ε and low values of α. As shown in Figure 4, when α ≤ 0.05
and ε ≥ 4, the Log-Laplace algorithm has average L1 error within
a factor of 10 of the current protection system. The Smooth Laplace
algorithm is within a factor 10 for all tested values of α at ε = 4.
At the lowest tested value of α (α = 0.01), the Smooth Laplace
algorithm is within a factor of 3 of the error of the current system.

Finding 4: All three of our algorithms perform better as population
size grows. This can be seen in both results that measure L1 error
(Figures 1, 4, and 3) as well as those that measure ranking (Fig-
ures 5 and 2). In the results that measure L1 error, the algorithms
have lower error with respect to the current protection system as
the population size grows. In the ranking results, the rank order of
our algorithms is more similar to the ranking order of the current
protection system as the population size grows. In all cases, the
improvement from the small population range (0-100) to the next
smallest (100-10k) results in the largest increase in performance.
Further increases in population size have a smaller effect.

Finding 5: Our Smooth Laplace algorithm performs the best of the
three, and the Log-Laplace and Smooth Gamma algorithms per-
form similarly. Smooth Laplace performs best in all experiments,
and this is not surprising since it satisfies a weaker notion of pri-
vacy. However, the ordering of the performance of the other two
algorithms is not consistent. Log-Laplace generally performs bet-
ter at lower values of ε.

Finding 6: For all counting workloads, Truncated Laplace had a
significantly higher cost than our techniques. E.g., for Workload 1

it incurs an additive error that is at least 10 times larger than that
of SDL techniques (at ε = 4), and the error does not decrease
significantly when ε is increased. Truncated Laplace also performs
poorly for ranking workloads. E.g., for Ranking 1 (Figure 2), it has
a correlation coefficient of no better than 0.7 for any value of θ at
every value of ε that we tested. For a fixed θ, increasing ε past some
point only provides small utility gains (this can be seen in the plot
for θ = 2 and happens at larger values of ε for larger θ). This is
because much of the error introduced is bias from removing large
establishments, and increasing ε does not change this error.
Summary: Our empirical results suggest that there are a number of
settings of (α, ε) that allow for publishing cell counts with little or
no additional cost to accuracy in return for better and provable pri-
vacy protection. For marginals over only establishment attributes,
all algorithms perform well at ε = 2 and α = 0.1. For individual
queries of worker and establishment attributes, our algorithms per-
form well at ε = 2 and α = 0.1. For marginals over worker and
establishment attributes, the Smooth Laplace algorithm performs
well when ε ≥ 4. All algorithms perform better when the queries
are over places with greater population size. Allowing for a small
failure probability results in a significant reduction in error as seen
with the Smooth Laplace algorithm. Counts output by our algo-
rithms can also be used for ranking with high accuracy for ε ≥ 1.
Choosing an algorithm: The three algorithms, Smooth Gamma,
Smooth Laplace, and Log-Laplace, have minor differences that can
make one better than another in different scenarios. Smooth Laplace
differs from the others in that it allows a small probability that the
privacy guarantee is not met. The drawbacks of this relaxation are
discussed in detail in Section 9, and the algorithm can be used to
achieve significantly lower error than the others if these drawbacks
are acceptable. If instead we want privacy with δ = 0, Smooth
Gamma and Log-Laplace also have slight differences. Values of α
and ε disallowed by the Smooth Gamma algorithm are still allowed
by the Log-Laplace algorithm, though the Log-Laplace algorithm
typically results in large errors for these values. The Log-Laplace
algorithm slightly outperforms the Smooth Gamma algorithm for
small ε, but is outperformed by Smooth Gamma for large ε.

11. CONCLUSIONS
We considered the problem of releasing ER-EE data with prov-

able privacy guarantees and measured the utility cost of this pri-
vacy protection. We identified privacy requirements based on cur-
rent interpretation of laws pertaining to the release of these data
and mathematically formalized them using the Pufferfish frame-
work. We showed that current SDL techniques do not satisfy these
strong privacy requirements. Direct adaptations of ε-differential
privacy either do not satisfy the privacy requirements or output data
with very limited utility. We develop novel privacy definitions that
provably satisfy our privacy requirements. For the task of releas-
ing marginals over establishment attributes, releasing single counts
over marginals that include worker attributes, and ranking queries,
our algorithms incur error that is comparable and in some cases less
than the error incurred by current SDL algorithms for reasonable
privacy parameters. Our results suggest these data can be released
using provably private algorithms with a low utility cost.
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APPENDIX
A. RELATED WORK

Prior work on interpreting privacy requirements: As reviews
like [14] and the similar review for business data in [15] make clear,
the privacy provisions in the statutes were designed to protect indi-
viduals and businesses from uses of the data that specifically iden-
tified them and, moreover, harmed them by subjecting them to pun-
ishment or competitive disadvantage in ways that could not be ac-
complished as easily without the confidential data. For protecting
individuals, [28] formalized these requirements as ensuring that no
exact disclosure of records in the underlying data. Fellegi derived
the necessary and sufficient conditions for a set of published ta-
bles to be fully resistant to a subtraction attack that could expose
one or more records. Thus, the primary goal of existing SDL tech-
niques has been to prevent exact re-identification. For instance, a
method called primary and complementary suppression [8] imple-
ments Fellegi’s conditions [28], and has long been considered by
statistical agencies around the world as compliant with confiden-
tiality protection laws [21].

With regards to business data, protecting the characteristics of an
establishment has been interpreted and implemented as described
in Section 5 as ensuring that (a) the true counts of the workforce
characteristics are never released or used to compute aggregates,
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and (b) employment counts of a workplace are perturbed by a con-
fidential multiplicative factor unique to that workplace.

Despite avoiding exact disclosures, data publications might vio-
late individual or business privacy by allowing too precise an infer-
ence about the true values, given the published values. This idea
was first formulated in the SDL literature [19] as well as rediscov-
ered and popularized in the computer science literature (e.g., [36,
34, 23]). We show in Section 5.2 examples of such inferences that
can be made by an adversary, especially in the presence of back-
ground knowledge. Our goal is to protect ER-EE data as per the
aforementioned requirements while ensuring a formal privacy no-
tion that can limit both inferential and exact disclosures.

Customizing differential privacy: Kifer and Machanavajjhala
[33] prove a no-free-lunch theorem for privacy that states that one
cannot achieve privacy and utility simultaneously without making
assumptions on the attacker’s prior knowledge. This means that no
single privacy notion (including differential privacy) ensures suffi-
cient privacy protection for all applications and data types. Hence,
recent work has focused on generalizations, both strengthening and
relaxing parts of the differential privacy framework. The Puffer-
fish framework [34, 35], which we use in this paper, generalizes
differential privacy by specifying what information should be kept
secret, and the attacker’s prior knowledge. He et al. [30] propose
the Blowfish framework, which also generalizes differential privacy
and is inspired by Pufferfish, and Haney et al. [29] give a general
method for creating algorithms for any Blowfish policy graph. Our
privacy requirements are an instantiation of Pufferfish, and our pri-
vacy definitions can be thought of as instantiations of Blowfish.
Chatzikokolakis et al [17] investigate notions of privacy that can be
defined as metrics over the set of databases. These have led to the
design of application specific privacy notions (e.g., [16, 39]).

Differential Privacy for complex entities: Section 6 shows that
our problem can be considered as one of differential privacy on
graphs, but the use of existing techniques either does not satisfy
our privacy requirements or results in a complete loss of utility.

B. PROOFS

CLAIM B.1. Differential privacy on establishments satisfies all
three privacy requirements given in Section 4. Differential privacy
on individuals does not satisfy all requirements.

PROOF. The proof that differential privacy on establishments
satisfies the three privacy requirements is essentially the same as
the proof of Theorem 7.1.

Differential privacy on individuals, however, does not satisfy the
requirements. For D and D′ differing in d individuals, the follow-
ing holds for all outputs S:

Pr[A(D) ∈ S] ≤ edε PrA(D′) ∈ S. (14)

When an establishment e with size |e| changes in size by a factor
of α, the change in the number of individuals is α|e|. As |e| goes to
infinity, the change in the number of individuals becomes arbitrarily
large, and therefore dε is not a constant.

PROOF OF THEOREM 7.1. Requirement 1: We will denote
Pr[M(D) = w] as Pr[w]. For some individual r,

log
Pr[w | r ∈ D]

Pr[w | r /∈ D]
≤ ε. (15)

Then, the individual privacy requirement of Definition 4.1 follows
from Bayes’ theorem.

Requirement 2: Let x and y be two numbers such that x ≤
y ≤ (1 +α)x. Then for all establishments e (where |e| denotes the

number of employees at e), we want to show that

log
Pr[w | |e| = x]

Pr[w | |e| = y]
≤ ε. (16)

Additionally,

Pr[w | |e| = x] =
∑
E⊂U

Pr[w | e = E] Pr[e = E | |e| = x],

(17)
and

Pr[w | |e| = y] (18)

=
∑
E′⊂U

Pr[w | e = E′] Pr[e = E′ | |e| = y] (19)

=
∑

E⊂U :|E|=x

∑
E′⊃E

Pr[w | e = E′] Pr[e = E′ | |e| = y] (20)

≥
∑

E⊂U :|E|=x

[
min
E′⊃E

Pr[w | e = E′]
∑
E′⊃E

Pr[e = E′ | |e| = y]

]
(21)

=
∑
E⊂U

[
min
E′⊃E

Pr[w | e = E′] Pr[e = E | |e| = x]

]
. (22)

Then, ∑
E⊂U Pr[w | e = E] Pr[e = E | |e| = x]∑

E⊂U [minE′⊃E Pr[w | e = E′] Pr[e = E | |e| = x]]
(23)

≤ max
E⊂U

Pr[w | e = E] Pr[e = E | |e| = x]

minE′⊃E Pr[w | e = E′] Pr[e = E | |e| = x]
(24)

= max
E⊂U

Pr[w | e = E]

minE′⊃E Pr[w | e = E′]
≤ eε. (25)

Requirement 3: Requirement 3 follows from requirement 2 for
an adversary. For some p, q, and z, let y be (q − p)|e|.

Pr[w | |eX |/|e| = p, |e| = z]

Pr[w | |eX |/|e| = p, |e| = z − y]
≤ eε. (26)

Additionally,

Pr[w | |eX |/|e| = q, |e| = z]

Pr[w | |eX |/|e| = p, |e| = z − y]
≤ eε. (27)

Both of these hold because the difference in sizes is at most α|e|.
Therefore,

Pr[w | |eX |/|e| = q, |e| = z]

Pr[w | |eX |/|e| = p, |e| = z]
≤ eε. (28)

PROOF OF THEOREM 7.2. A proof of requirement 1 is the same
as in the proof of Theorem 7.1. For weak adversaries, proof of re-
quirement 2 is also the same as Theorem 7.1. Requirement 3 fol-
lows for weak adversaries.

We can also prove requirement 3, even for strong adversaries.
We want to show

Pr[w | |eX |/|e| = q, |e| = z]

Pr[w | |eX |/|e| = p, |e| = z]
≤ eε. (29)

for all χ, and for 0 < p ≤ q ≤ min((1 + α)p, 1). Let x = |e|p
and y = |e|q. Then we have

Pr[w | |eX |/|e| = q, |e| = z]

Pr[w | |eX |/|e| = p, |e| = z]
=

Pr[w | |eX | = y]

Pr[w | |eX | = x]
. (30)

But
Pr[w | |eX | = y]

Pr[w | |eX | = x]
≤ eε, (31)
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for all X when x ≤ y ≤ (1 + α)x by a similar argument to the
proof of Requirement 2 of Theorem 7.1.

PROOF OF THEOREMS 7.3, 7.4, AND 7.5. The proof of sequen-
tial composition follows from Pufferfish (Theorem 9.1 of [35]).

To satisfy parallel composition, we need the following: Let D1

and D2 be disjoint parts of the domain. Then for all databases A
there exists a B such that

d(A ∩D1, B ∩D1) + d(A ∩D2, B ∩D2) ≤ d(A,B), (32)

where d(·) is the distance metric induced by our neighboring defi-
nition. In particular, we should show that if A ∩ D1, B ∩ D1 are
neighbors, and A ∩D2, B ∩D2 are neighbors, then A,B are not
neighbors. This is clearly the case whenD1 andD2 are over differ-
ent sets of establishments, since neighbors can only differ in a sin-
gle establishment regardless of whether we are considering strong
or weak privacy. Next, consider some pair D1 and D2 over work-
ers with shared establishments, and let e be the largest such shared
establishment. Suppose inA∩D1, e hasE workers, and inB∩D1,
e has (1 + α)E workers. Similarly, in A ∩ D2, e has E workers,
and in B ∩ D2, e has (1 + α)E workers. Then A and B differ
in 2αE workers, and are therefore not neighbors under our strong
definition. The same does not hold under the weak definition.

PROOF OF THEOREM 8.1. Consider two neighboring datasets
that differ in one establishment e. S′ and S be the two sets of
employees of e in the two databases. Let n− denote the sum of
all other counts. We just consider the case where S ⊆ S′. Let
y = |S| and x = |S′|. We need to ensure privacy for two cases: (i)
x = (1 + α) · y, and (ii) x = y + 1. In case (i),

P (M(D1) = o)

P (M(D2) = o)
=

P (M(x+ n−) = o)

P (M(y + n−) = o)

=
P (η = ln(o+ γ)− ln(x+ n− + γ)

P (η = ln(o+ γ)− ln(y + n− + γ)

≤ exp

(
ε

ln(1 + α)
ln

(
(1 + α) · y + n− + γ

y + n− + γ

))
≤ exp

(
ε

ln(1 + α)
· ln(1 + α)

)
= eε

In case (ii),

P (M(D1) = o)

P (M(D2) = o)
=

P (M(1 + y + n−) = o)

P (M(y + n−) = o)

≤ exp

(
ε

ln(1 + α)
ln

(
1 + y + n− + γ

y + n− + γ

))
≤ exp

(
ε

ln(1 + α)
ln(1 + α)

)
= eε

PROOF OF LEMMA 8.2.

E[x̃] = −γ + (x+ γ) · E[eη]

where η ∼ Laplace(λ). E[eη] corresponds to the value of the
moment generating function Mη(1).

Mη(1) = E[eη] = 1 +

∞∑
n=1

E[ηn]/n!

Since Laplace(λ) is an even distribution, for all odd i, E[η] = 0.
Moreover, E[η2n] = 2n!λ2n. Therefore, when λ < 1

E[x̃] = −γ + (x+ γ) ·
∞∑
n=1

λ2n

= −γ + (x+ γ)/(1− λ2)

When λ is not bounded by 1, then the expected value is not bounded.
Thus this mechanism is good only when λ < 1.

PROOF OF THEOREM 8.3. Let y denote x+γ, where qv(D) =
x is the true sum. Similarly, let ỹ denote x̃+γ, where x̃ is the output
of the log-laplace mechanism. We will show that

E

((
y − ỹ
y

)2
)

=
2λ2 + 4λ4

(1− 4λ2)(1− λ2)

The result in the theorem directly follows.

E((y − ỹ)2/y2) = E(ỹ2)/y2 − 2E(ỹ)/y + 1

= E(ỹ2)/y2 − 2/(1− λ2) + 1

E(ỹ2)/y2 = E[e2·η], where η ∼ Laplace(λ). E[e2·η] corre-
sponds to the value of the moment generating function Mη(2).

E(ỹ2)/y2 = E[e2·η] = Mη(2) = 1 +

∞∑
n=1

2nE[ηn]/n!

= 1 +

∞∑
n=1

(2λ)2n

= 1/(1− 4λ2) when λ < 1/2

Therefore, we have:

E((y − ỹ)2/y2) = 1/(1− 4λ2)− 2/(1− λ2) + 1

=
2λ2 + 4λ4

(1− 4λ2)(1− λ2)

PROOF OF THEOREM 8.4. For y ∈ nbrs(x), we show that

Pr [M(x) ∈ S] ≤ eε · Pr [M(y) ∈ S] . (33)

We have

Pr [M(x) ∈ S] = Pr
Z∼h

[
Z ∈ S − q(x)

S(x)/α

]
(34)

≤ Pr
Z∼h

[
Z ∈ S − q(y)

S(x)/α

]
· eε1 +

δ

2
(35)

≤ Pr
Z∼h

[
Z ∈ S − q(y)

S(y)/α

]
· eε1+ε2 + δ (36)

≤ Pr [M(y) ∈ S] · eε + δ. (37)

(35) holds by the first property of Definition 8.3. (36) holds by the
second property of Definition 8.3.

PROOF OF LEMMA 8.5. First, we show the following general
claim: For all x, let N1(x) and N2(x) be sets of neighbors of x
such that N1(x) ∪N2(x) = N(x). Then, let LS1(x) be the local
sensitivity of x over N1(x) and let LS2(x) be the local sensitivity
over N2(x). Then, LS = max(LS1, LS2). Let S1 and S2 be
smooth upper bounds on LS1 and LS2. We claim that the function
S = max(S1, S2) is a smooth upper bound on LS.

1. We know that S is an upper bound on both LS1 and LS2.

2. S is smooth because for any neighboring pair x and y, the
difference between S(x) and S(y) is at most the difference
between S1(x) and S1(y) and likewise for S2.

We apply this to our problem by letting N1(x) be the set of
neighbors of x that differ in size by exactly 1, and N2 be the set
of neighbors such that the size of an establishment’s employment
differs by a factor of at most ε. For N1, the global and local sensi-
tivity is 1, which is smooth. For N2, we must give a bound on the
smooth sensitivity to complete the proof.
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The local sensitivity of qv with respect to x and N2 is the maxi-
mum amount by which any firm’s (matching the criteria in v) count
of employees (matching the criteria in v) can change. Note that xv
is the largest such count, and therefore LSqv (x) = xv · (1 + α)−
xv = xv · α Then, we have

A(j)(x) = max
y∈D:d(x,y)≤j

yv · α.

This value is maximized by maximizing yv . The maximum value
for yv is xv(1 + α)j . Therefore, A(j)(x) = xv · α(1 + α)j . Our
smooth sensitivity is therefore

S∗v,b(x) = max
j

(
1 + α

eb
)jxvα.

Our databases do not have a fixed size, so j can be any posi-
tive integer, and therefore the smooth sensitivity is not necessarily
bounded. When eb < (1 + α),

S∗v,b(x) = max
j

(
1 + α

eb
)kxvα = lim

j→∞
(
1 + α

eb
)jxvα,

which is unbounded. When eb ≥ (1 + α), this limit is bounded,
and in this case S∗v,b(x) = xv · α.

PROOF OF LEMMA 8.6. Let |λ| ≤ ε1
γ+1

. We must show that

ln
(
eλh(eλz)
h(z)

)
≤ ε1. This follows because

ln

(
eλh(eλz)

h(z)

)
= ln

(
eλ(1 + (eλ|z|)γ)

1 + |z|γ

)
(38)

≤ ln

(
(eλ|z|)γ

|z|γ

)
≤ λ(γ + 1). (39)

For the sliding property, we must show ln
(
h(z+∆)
h(z)

)
≤ ε2. This

follows from [38].

PROOF OF LEMMAS 8.7 AND 9.2. These follow directly from
Theorem 8.4 and Lemma 8.5.

PROOF OF LEMMAS 8.8 AND 9.3. We show that the that the
random variable η drawn in each algorithm has expectation 0, and
constant expected L1. It is well known that the Laplace mechanism
is unbiased with Laplace(λ) having expected error of λ. We prove
here that h(z) ∝ 1

(1+|z|γ)
is unbiased with bounded error for γ =

4. h(z) is unbiased since

E [h(z)] =

∫
z

1 + |z|4 dz = 0.

The expected L1 error of h(z) is given by∫
|z|

1 + |z|4 dz =
π

2
≈ 1.57.

C. ADDITIONAL FIGURES

δ α ε δ α ε
.05 .01 .105 5× 10−4 .01 .15
.05 .10 1.01 5× 10−4 .10 1.45
.05 .20 1.932 5× 10−4 .20 2.13

Table 2: Minimum values of ε given α and δ
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Figure 4: Average L1 error ratio of worker and workplace attribute
marginal compared to the current system.
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Figure 5: Spearman correlation between tested model and input noise
infusion on count of female workers with bachelors degree or higher,
ranked by Census place by NAICS sector (industry) by ownership.
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